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ABSTRACT Many biological and chemical processes proceed through one or more intermediate steps. Statistical analysis of
dwell-time distributions from single molecule trajectories enables the study of intermediate steps that are not directly observable.
Here, we discuss the application of the randomness parameter and model fitting in determining the number of steps in
a stochastic process. Through simulated examples, we show some of the limitations of these techniques. We discuss how
shot noise and heterogeneity among the transition rates of individual steps affect how accurately the number of steps can be
determined. Finally, we explore dynamic disorder in multistep reactions and show that the phenomenon can obscure the pres-
ence of rate-limiting intermediate steps.

INTRODUCTION

Biochemical and biophysical processes generally pass
through one or more intermediate steps. Enzymatic reac-
tions, for instance, typically follow a pathway that involves
substrate binding followed by catalysis and substrate release
(1). Conventional ensemble-averaging techniques neces-
sarily blur individual steps in an enzymatic reaction. For
example, steady-state measurements are often used to gain
access to simplified kinetic parameters such as kcat, the turn-
over rate at saturating substrate concentration, and Km,
a measure of the binding affinity of the substrate. Stopped-
flow kinetics can overcome these limitations (2), but time
resolution and coherence of the reaction can still be limiting.
Kinetic measurements of single molecules or particles are
inherently free of these experimental limitations. Moreover,
development of sensitive imaging and manipulation methods
have greatly enhanced our ability to analyze a number of
biochemical and biophysical processes (3–5). For example,
optical trapping and fluorescence imaging have been used
to track individual motor proteins and have led to new
insights about the mechanism by which they move along
protein filament tracks (6–9), and basic mechanistic ques-
tions about DNA replication have been addressed by
observing the activity of single replication proteins and
complexes (10–13).

Although kinetic measurements of large ensembles of
biomolecules provide access to average reaction times,
single-molecule trajectories show the fluctuations in those
times and reflect the underlying stochastic nature of

biochemical reactions. Rather than being regarded as noise,
these random fluctuations encode mechanistic information
that can be extracted by statistical modeling. For instance,
in a previous study we analyzed the distribution of lag times
of membrane fusion by influenza virus particles to identify
a multistep process corresponding to the number of fusion
proteins that participate in a fusion reaction (14). Similar
analysis of the dwell times of motor proteins provided clues
about the underlying kinetic intermediates that precede
a power stroke (15,16).

In this study, we describe how experimental single-mole-
cule kinetic data can be used to study multistep processes.
We will discuss some of the limits of what can be learned
from experimental data and use simulations of stochastic
processes to inform an appropriate interpretation of experi-
mental results. In particular, we discuss how the statistical
quality of the data influences the accuracy in determining
the number of steps and intermediate transition rates of
multistep processes. We also characterize how heterogeneity
in the rate constants for each of the individual steps impact
the ability to accurately determine the number of rate-
limiting steps. Finally, we explore the effects of dynamic
disorder in multistep reactions and show that the phenom-
enon can obscure the presence of rate-limiting intermediate
steps.

Theory background

At the single-molecule level, chemical and physical
processes are stochastic, meaning that a reaction takes a vari-
able time, t, to complete a cycle. The distribution of waiting
times, p(t), contains information about the mechanism of the
process. If completion of a cycle, such as a transition from
state A to state B, occurs in a single step, the distribution
of t follows a single exponential decay, k! exp["kt], where
k is equal to 1/hti. The brackets denote the expectation value
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of t. If the A to B transition proceeds through formation of an
intermediate X:

A/
k1

X/
k2

B; (1)

p(t) becomes the joint probability density of two sequential
stochastic processes. If B is formed within a time t, then
formation of the intermediate must have occurred at time
t< t, and B was formed from the intermediate in the remain-
ing time t " t. The probability of an A/ B event occurring
at time t is equivalent to the joint probability of an A / X
turnover at time t and a X / B turnover occurring at time
t " t. The probability distribution of A / B is obtained
by integrating over all possible times t < t:

pA/BðtÞ ¼
Z t

0

PA/XðtÞPX/Bðt " tÞdt: (2)

Equation 2 shows that the joint probability of two
sequential processes is the convolution of each individual
process (17). If the probability distributions for the indi-
vidual transitions are described by single-exponential
decays, we obtain pA/B(t) by convolving k1 ! exp["k1 t]
and k2 ! exp["k2 t]:

pA/BðtÞ ¼

( k1k2
k1 " K2

!
e"k2t " e"k1t

"
; k1sk2

k2te"kt; k1 ¼ k2

: (3)

Instead of a single exponential decay, pA/B(t) represents
a distribution characterized by a rise and decay (Fig. 1, red
trace). Even if only the final state can be observed in an
experiment, information about the hidden intermediate is en-
coded in the shape of the waiting-time distribution. Many
biochemical processes consist of more than two steps

(14,18), so we extend the above argument to multiple inter-
mediate steps:

A/
k

X1/
k

X2//
k

XN"1/
k

B: (4)

This scheme describes the simplest case for a process con-
sisting of N steps in which the transition between each step is
described with a single rate constant k. The assignment of
a single rate constant is a reasonable simplification because
only the slowest steps in a reaction will contribute signifi-
cantly to pA/B(t) (see below). As in Eq. 1, we can derive
pA/B(t) for this process by convolution. This calculation
is cumbersome for large N, so instead we work with Laplace
transforms because convolution in the time domain is equiv-
alent to multiplication in the frequency domain (19). In Lap-
lace space, ~PA/BðsÞ is the product of transformed density
function of each intermediate transition, p(t). As before,
we assume step is exponentially distributed

~PðsÞ ¼
#Z N

0

pðtÞe"stdt

$N

¼
#

k

s þ k

$N

: (5)

To obtain pA/B(t) we take the inverse transform:

pA/BðtÞ ¼ 1

2pi

Z iN

0

~PA/BðsÞestds ¼ kNtN"1

GðNÞ
e"kt: (6)

Equation 6 is a gamma distribution where G(N) is the
gamma function, equivalent to (N " 1)! for integral N.

Fig. 1 shows gamma distributions of various N plotted as
a function of t. Note that N is qualitatively encoded in the
shape of the curve: increasing N causes the distribution to
become narrower and more symmetric about its peak. Fitting
experimental experimentally measured waiting-time distri-
butions to a gamma distribution allows determination of
the turnover rates and number of steps, assuming that the
rate constants of each step are comparable (2,20,21).

Determining p(t) requires observations of many events
spread over a large dynamic range of timescales. This can
be challenging in cases where events are lost to instrumental
noise, or other experimental limitations prevent measure-
ment of very short or long event times. Schnitzer and Block
proposed using the randomness parameter (r) to characterize
p(t) using realistically noisy and incomplete experimental
data (15). The randomness parameter is essentially a measure
of the spread in event waiting times compared to the typical
time:

r ¼ ht2i" hti2

hti2
: (7)

A regular clock-like process will have a low r value ap-
proaching zero, and more random or irregular processes
have higher r values. For single-step processes, where p(t)
is a single exponential decay, the standard deviation equals
the mean and r ¼ 1. For a multistep process with identical
rate constants, p(t) is a gamma distribution (Eq. 7) with
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FIGURE 1 The presence of multiple rate limiting steps is encoded in the

shape of p(t). A single step process results in a dwell time distribution char-

acterized by a single exponential decay. Two or more steps give a rise and

decay shaped distribution that can be modeled with a gamma distribution.
Shown are gamma distributions where N ¼ 1, 2, 3, and 10. The randomness

parameter, r, is a measure of the width p(t) relative to its mean and is equal

to 1/N if p(t) is gamma distributed (inset).
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hti¼ N/k and ht2i" hti2 ¼ N/k2, and r¼ 1/N (Fig. 1, inset).
Therefore the randomness parameter is also a measure of the
number of rate limiting steps.

METHODS

Multistep stochastic processes were generated with software written in

MATLAB (The MathWorks, Natick, MA). Waiting times for N step sequen-
tial processes were generated from the sum of N exponentially distributed

random numbers with a decay constant, k, set to a specified value. To simu-

late disorder, the rate constant for the disordered step was generated from the
logarithm of a normally distributed random number. A total of 104 events

were simulated for each experimental condition.

RESULTS AND DISCUSSION

The effect of shot noise on the determination of N

The accuracy with which we can determine the parameters of
a multistep process depends on both the number of experi-
mental observations (n) and the number of steps in the
process. Poisson or shot noise is inherent to any waiting-
time distribution with a finite n; its magnitude is proportional
to

ffiffiffi
n

p
. The actual number of steps also affects how accu-

rately we can estimate N for a given n because the distinction
between gamma distributions with N and N þ 1 steps dimin-
ishes as N becomes large.

To characterize the effect of Poisson noise on the accu-
racy of N obtained from fitting dwell-time distributions
with a gamma distribution, we simulated dwell-time distri-
butions from processes consisting of N ¼ 1, 3, 6, or 10
steps. Fig. 2, A–D, illustrate the c2 fitting error when
comparing the simulated dwell-time distributions to p(t)
as a function of k and N. The contour plots clearly point
to the difficulty of fitting distributions with large N. Contour
maps of the c2 fitting error of p(t) show that the best solu-
tions lie on a diagonal with a slope N/k equal to hti. If
p(t) is a single-exponential decay (N ¼ 1), the global
minimum is distinct, and the error rises sharply as one
moves away from the correct solution (Fig. 2 A). As N
increases, however, the error topology along the diagonal
becomes increasingly flat, and the accuracy of the fitted
parameters becomes increasingly limited by the shot noise
and experimental error of the data.

To determine how many observations are required to esti-
mate N with a known uncertainty, it is useful to consider the
standard deviation of the randomness parameter (Eq. 7). The
standard errors of the mean and variance of t are, respec-
tively, s=

ffiffiffi
n

p
and s2

ffiffiffi
2

p
=

ffiffiffi
n

p
, where n is the number of obser-

vations, and s and s2 are the standard deviation and variance
of t, respectively. Propagating these errors through Eq. 7
gives the standard deviation of the randomness parameter,
or equivalently, the estimated N:

sN ¼ 2
ffiffiffiffi
N

p
þ N

ffiffiffi
2

p
ffiffiffi
n

p N: (8)

The minimum number of observations, n, required to
determine N with a given uncertainty sN is therefore

nmin ¼
!
2

ffiffiffiffi
N

p
þ N

ffiffiffi
2

p "2

s2
N

: (9)

Equation 9 is plotted in Fig. 3 (solid lines) and indicates
the minimum number of observations needed to estimate
the number of steps in a process with an error of 1, 2, or 3
steps. For instance, ~50 events are sufficient to distinguish
2 steps from 3, but ~300 observations would be required to
resolve a 9-step process from one of 10 steps.

Simulated waiting-time distributions show the same trend
when fit with gamma distributions. Multistep processes with
N ranging from 1 to 10 steps were simulated, and waiting
time distributions were compiled with a varying number of
observations. To estimate the error in the fitted parameters,
the simulations were repeated to produce 500 waiting-time
distributions for each condition. The distributions were fitted
to produce a distribution of fitted N for a given number of
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FIGURE 2 Accurately determining the number of steps in a process
becomes more difficult with increasing N. (A–D) Contour plots show the
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observations. The root mean-square deviation of the fitted N
from the actual number of steps gives the fitting error. The
number of observations required to estimate N with an error
of 1, 2, or 3 steps is consistent with Eq. 9 (Fig. 3, squares,
circles, and triangles, respectively).

Multistep processes with unequal rate constants

The above constraints on shot noise for determining N
assume that the turnover rates for each step are identical.
To determine the effect of unequal rate constants, we consid-
ered a multistep process in which one of the transitions
occurs at a different rate than the other steps:

A/
k

X1/
k

X2//
k

XN"1/
kN

B: (10)

Only the slowest transitions in such a process are consid-
ered rate-limiting, as can be seen by inspecting the Laplace
transform of the probability density function for this process:

~PðsÞ ¼
#

k

s þ k

$N"1# kN
s þ kN

$
: (11)

Equation 11 collapses into the transform of a single-expo-
nential decay when kN is small and a gamma distribution of
N" 1 steps when kN is large. In between these two extremes,
where kN is comparable but not equal to k, all N steps are rate
limiting and can still be recovered by gamma-distribution
analysis. To get a quantitative understanding for what consti-
tutes comparable rate constants, we carried out Monte Carlo
simulations of a multistep stochastic process described in
Eq. 10, in which kN is varied in relation to the other identical
constants, k. For each experiment, 10,000 events were simu-
lated from a 3- or 8-step sequential process. The event times

were binned and fitted to gamma distributions to estimate the
number of steps and rate constant. Gamma distribution fitting
and the randomness parameter accurately determine the
number of steps when kN is equal to k (Fig. 4 A). When kN
is smaller than k, the apparent number of steps decreases
sharply and is reduced to half the actual number when kN
is 10 times slower than k. The apparent N ultimately
converges to a single step and is indistinguishable from
a single-step process when kN is much slower than k. In
the opposite situation, when kN more than an order of magni-
tude >k, the lifetimes of the slower N " 1 steps dominate
p(t), and the apparent number of steps approaches N " 1.
In these cases, N must be interpreted as the number of
rate-limiting steps or generally as a lower bound of the total
number of steps.

Disorder

Up to this point, we have assumed that multistep processes
are defined by a set of distinct rate constants. However,
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a number of single molecule studies of enzyme kinetics have
shown that catalytic rates of individual enzyme molecules
can fluctuate by more than an order of magnitude (22–25).

Enzyme kinetics are generally described according to
a two-step Michaelis-Menten model in which an enzyme
reversibly binds to a substrate to form a complex ES. The
product P is formed from this complex and released to regen-
erate the enzyme for the next cycle.

E þ S%
k1

k"1

ES/
k2

E þ P: (12)

Time-dependent fluctuations in the catalytic rate (k2) of
multiple enzymes have been observed and is attributed to
slow interconversions between different conformational
states of the enzyme molecule. In one notable example,
English et al. (23) used confocal microscopy to observe
the catalytic activity of single b-galactosidase molecules.
Under saturating substrate conditions, the catalytic step is
rate limiting, but the distribution of waiting times between
enzymatic cycles did not follow a single-exponential decay.
Instead, a multiexponential decay distribution was observed,
showing that the catalytic rate fluctuated during the course of
the experiment. The results were consistent with a kinetic
model in which the enzyme slowly samples a large number
of conformers, giving rise to a continuous distribution of
catalytic rates (23,26).

Dispersive kinetics can potentially reveal information
about the conformational dynamics of enzymes, but it can
also mask the presence of multiple rate-limiting steps by
increasing the spread in waiting times. To explore this effect
of dynamic disorder, we carried out simulations of a two-step
enzymatic reaction (Eq. 12) in which the rate constant of the
catalytic steps, k2, was allowed to randomly fluctuate accord-
ing to a distribution, w(k2). We made explicit the connection
between conformational dynamics and the catalytic rate by
modulating k2 with a normally distributed transition state
activation energy w(Ea) according to the Arrhenius equation.

wðk2Þ ¼ k0exp½ " wðEaÞ=kBT(: (13)

The prefactor k0 represents the rate in the absence of
a barrier; kB and T are the Boltzmann constant and tempera-
ture in Kelvin, respectively. The association step k1 was
given a discrete value equal to the median of w(k2) and
was assumed to be irreversible (k1 >> k"1).

For each simulation, values of Ea were generated from
w(Ea) with a predetermined variance, and w(k2) was calcu-
lated from Eq. 13. The effect of increasing the disorder in
k2 can be seen in waiting time distributions in Fig. 5, A–C.
As the width of w(k2) increases, the width of p(t) also
increases and gradually resembles an exponential decay.
A plot of the apparent number of steps as a function the
mean-square normalized variance of w(k2) confirms this
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trend (Fig. 5 D). Both k1 and k2 are rate limiting in the sense
that the median values are equal. However, the apparent
number of steps tends to decrease as the dispersion in k2
increases. Both 1/r and N begin to drop sharply when the
mean square normalized variance of w(k) (sk2

2) > 1, which
is the same magnitude of disorder observed in b-galactosi-
dase and cholesterol oxidase (23,25). The effect of disorder
on the apparent number of steps is even more pronounced
if both k1 and k2 are dispersed: 1/r and N drop rapidly for
sk

2 > 0.1 (Fig. 5, E and F, red traces). Processes containing
more than two steps also show the same trend (Fig. 5, E and
F, green and blue traces).

In these simulations, dynamic disorder is apparent from
the anomalously large r values (recall that the randomness
parameter can only take values between 0 and 1 in a simple
multistep mechanism). Moreover, the quality of the fits
gamma distributions deteriorates as the width of p(t)
becomes large. We note that the range and number of obser-
vations of t that can be measured in an actual experiment are
typically limited. Realistic experimental limitations could
mask the presence of dynamic disorder and lead to an under-
estimation of the number of steps.

If dynamic disorder were a general phenomenon in
biochemical processes, multistep processes would be experi-
mentally indistinguishable from processes with fewer inter-
mediates or even reactions with a single step. The fact that
multiple rate-limiting steps have been observed in several
biochemical processes (14,16,18,27) suggests dynamic and
static disorder of the magnitude observed may not be typical.
Conversely, wemay conclude that there is little kinetic disper-
sion in systems in which multistep kinetics are observed.

Many organisms depend on precisely timed biochemical
reactions for their survival. A number of biological processes
ranging from gene expression to sleep cycles in animals are
regulated by circadian clocks that precisely oscillate with
a 24-h period (28,29). Propagation of action potentials
through and between neurons and circulation of blood via
rhythmic contraction also require precise timing and coordi-
nation (30). These biological oscillators, which consist of
sequences of stochastic biochemical reactions, can achieve
clock-like precision as a consequence of the Central Limit
Theorem. Increasing the number of exponentially distributed
intermediate steps in a multistep process causes the spread in
waiting times to narrow. As N becomes large, p(t) approxi-
mates a Gaussian distribution with an increasingly small r.
However, the randomness in multistep processes reappears
if there is too much disorder in the intermediate transition
rates. The need for precise control over the timing of these
and other biological processes suggests that dynamic disorder
is limited or nonexistent in many biochemical systems. Addi-
tionalmeasurements of larger variety of systems are needed to
gauge the prevalence of kinetic dispersion.

It is clear that one must be cautious in the interpretation of
experimental waiting time distributions. Shot noise resulting
from a finite number of observations introduces uncertainty

in the determination of the number of steps in a multistep
reaction. Heterogeneity in the rate constants governing indi-
vidual steps requires one to interpret N as the number of rate-
limiting steps. Even rate-limiting steps can be overlooked if
there is significant fluctuation in transition rates for indi-
vidual steps. Other analytical methods have been developed
to detect intermediate steps, in which the early dwell times of
p(t) exhibits a power-law dependence on N (31). A related
technique uses stabilized integral transformations to recon-
struct the underlying kinetic parameters (20). However, these
methods are also subject to limitations imposed by shot noise
and kinetic dispersion.

We have shown that the presence of significant disorder
can obscure the presence of intermediates in multistep
processes. Until now, dynamic disorder has been measured
in just a few biological systems. Studies of other enzymes
and biochemical systems are necessary to determine whether
dynamic disorder of the magnitude observed previously is
a common phenomenon.
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