Host-mediated Selection of Influenza Virus Receptor Variants

SIALIC ACID-α2,6Gal-SPECIFIC CLONES OF A/DUCK/UKRAINE/1/63 REVERT TO SIALIC ACID-α2,3Gal-
SPECIFIC WILD TYPE IN OVO

(Given for publication, December 31, 1984)

Gary N. Rogers‡, R. S. Daniels§, John J. Skehel§, Don C. Wiley*, Xiao-fan Wang†,
Herman H. Higa‡, and James C. Paulson††

From the ‡Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90024, the §Division of
Virology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom, and the ††Department of
Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138

Human and animal influenza A isolates of the H3 serotype preferentially bind SAα2,6Gal or SAα2,3Gal
linkages (where SA represents sialic acid), respectively, on cell-surface sialyloligosaccharides. Previously,
we have demonstrated selection of SAα2,3Gal-specific receptor variants of several human viruses which
differed from the parent viruses by a single amino acid at residue 226 of the hemagglutinin which is
located in the receptor binding pocket (Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson,
was accomplished starting with a SAα2,3Gal-specific avian virus, A/duck/Ukraine/1/63 (H3N7), yielding
SAα2,6Gal-specific variants that exhibit the receptor binding properties characteristic of the human isolates.
Selection was again mediated at residue 226 of the hemagglutinin, in this case changing from Glx in the
parent virus to Leu in the variants.

Although the SAα2,6Gal-specific avian virus variants were stable to passage in MDCK cells, they exhibited
dramatic reversion to the SAα2,3Gal-specific phenotype of the parent virus during a single passage
in chicken embryos. This was in contrast to the SAα2,6Gal-specific human virus isolates which were
stable to passage in both hosts. The reversion of the avian virus variants in eggs provides compelling
evidence for host-mediated selection of influenza virus receptor variants.

Influenza viruses exhibit considerable diversity in their ability to recognize specific sialyloligosaccharide structures as
cell-surface receptor determinants (1–4), and it has become increasingly evident from laboratory models (5–8) that such
specificity can provide the basis for changes in receptor binding that have been reported to occur during host adaptation
(9–12). Indirect evidence that receptor binding properties may be important in the ecology of influenza viruses comes from
the correlation between receptor specificity and species of

* This work was supported by United States Public Health Service Research Grant AI-16165 to J. C. P., National Institutes of Health
Grant AI-13614 to D. C. W., and National Science Foundation Grant
PC-771389 to D. C. W. (computing hardware). The costs of publication
of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. Section 1794 solely to indicate this fact.
†† Recipient of an American Cancer Society Faculty Research Award.

1 The abbreviations SAα2,6Gal and SAα2,3Gal refer to the terminal
sialic acid (SA) linkage commonly found on glycoprotein oligo-
saccharides linked to asparagine and to threonine or serine, respec-
tively (25, 26). Unless otherwise specified, SA refers to N-acetylene-
uraminic acid (NeuAc). Other abbreviations used include: NeuGc, N-
glycolnuraminic acid; Gal, galactose; GalNAc, N-acetylgalactosa-
mine; GlcNAc, N-acetylgalactosamine, pfu, plaque-forming units; HA,
hemagglutination; HAI, hemagglutination inhibition assay.
example of host-mediated selection based on receptor specificity.

MATERIALS AND METHODS

Cells—Madin-Darby canine kidney (MDCK) cells (ATCC CCL23) were passaged and maintained in Eagle's minimum essential medium supplemented with 6% fetal calf serum and 100 units/ml of penicillin G, 100 μg/ml streptomycin sulfate, and 0.25 μg/ml amphotericin B.

Virus Growth—A/duck/Ukraine/1/63 (H3N7) was generously provided by Dr. Robert G. Webster, St. Jude Children's Research Hospital, Memphis, TN. Cloned variants of A/Memphis/102/72 (H3N2) were produced from a seed stock, also obtained from Dr. Webster, by passage in the absence (M1/0) or presence (M1/166b) of horse serum as previously described (8).

As standard procedure for growth in MDCK cell culture, monolayers were inoculated with virus, multiplicity of infection around 0.001, and incubated at 34 °C for 48-48 h in Eagle's minimum essential medium containing 2.5% bovine serum albumin and 20 μg/ml trypsin. At harvest, the medium was removed and centrifuged at 700 × g for 10 min to remove cell debris. Virus preparations were stored at −70 °C until assayed. As a standard practice, samples were assayed in parallel for hemagglutination activity and infectivity on MDCK cell monolayers in the presence of 20 μg/ml trypsin (14).

Preparation of Derivatized Erythrocytes—The procedures for the enzymatic modification of human erythrocyte glycosphcerases have been previously described (4, 16). Briefly, native human erythrocytes were treated with Vibrio cholerae sialidase (GIBCO) to remove sialic acid and abolish viral adsorption and hemagglutination. The sialic acid determinants were restored in a single, defined sequence by treatment of sialidase-treated (asialo) erythrocytes with CMP-β-N-acetylneuraminic acid (New England Nuclear) and one of two highly purified mammalian sialyltransferases. The sialyltransferases employed in this study include the Galβ1,3GalNAc α2,3-sialyltransferase, purified from porcine submaxillary glands (17), and the Galβ1,4GlcNAc α2,6-sialyltransferase, purified from rat liver (18). The terminal sialyloligosaccharide sequence elaborated and the amount of sialic acid incorporated for each of these enzymes are, respectively, SAα2,3Galβ1,3GalNAc, 100–110 nmol/ml of packed erythrocytes, 100–110 nmol/ml of packed erythrocytes, and SAα2,3Galβ1,4GlcNAc, 35–40 nmol/ml of packed erythrocytes.

Hemagglutination (HA) and Hemagglutination Inhibition (HAI) Assays—HA and HAI titers were determined in a Cooke microtiter system using a 1.5% suspension of native, asialo, or resialylated erythrocytes as previously described (8). The titration and plates for both HA and HAI assays were determined after 60 min at room temperature.

Viral Adsorption to Derivatized Erythrocytes—For selection of receptor variants, adsorption of A/duck/Ukraine/1/63 to SAα2,6Gal-derivatized erythrocytes was performed essentially as previously described (4), except that virus was present in 15- to 30-fold higher concentrations. Virus (0.4 ml of MDCK cell lysates with HA titers of 64–128) was mixed with derivatized erythrocytes (5% v/v final concentration) and incubated for 5 min at room temperature. Erythrocytes and bound virus were pelleted by centrifugation at 4000 × g for 1 min, and the pellets were washed four times in fresh buffer. Adsorbed virus was eluted from erythrocytes with Clostridium perfringens sialidase (Sigum) as described under “Results.”

RESULTS

Selection of Receptor Variants of A/duck/Ukraine/1/63—While horse serum glycoprotein inhibitors have proven useful in the isolation of SAα2,3Gal-specific variants from human (SAα2,6Gal-specific) viruses, no glycoprotein yet examined has proven to be a selective inhibitor of hemagglutination of viruses specific for SAα2,3Gal, including human glycoporin which is presumably the predominant receptor on erythrocytes. Consequently, selection of SAα2,6Gal variants from SAα2,3Gal-specific avian isolates required a different approach. The procedure used, depicted in Fig. 1, involves selective adsorption and elution of the SAα2,3Gal-specific A/duck/Ukraine/1/63 with erythrocytes enzymatically modified to contain SAα2,6Gal sequences. First, virus was adsorbed to cells under conditions of large viral excess as previously described (7). The bound virus was eluted from cells by addition of C. perfringens sialidase (250 millilits/ml) and incubation at 57 °C for 3 h. The virus released from erythrocytes was then grown in MDCK cell culture to amplify variants. After four such cycles, the eluted virus was plaqued on MDCK cells without intermediate amplification. Primary clones were initially screened for sensitivity to inhibition of growth in MDCK cells in the presence of horse serum and, finally, for receptor specificity by adsorption to derivatized erythrocytes. Of 64 primary clones, 5 were found to be specific for SAα2,6Gal linkages.

The receptor binding characteristics of five wild type clones and five cloned variants from A/duck/Ukraine/1/63 were compared to the parent virus, and the results are shown in Table 1. Each of the virus preparations was examined for its ability to agglutinate native, sialidase-treated (asialo) and enzymatically resialylated erythrocytes containing SAα2,3Gal or SAα2,6Gal sequences and for sensitivity to equine α1-macroglobulin, the major glycoprotein inhibitor of horse serum. The parent strain of A/duck/Ukraine/1/63-agglutinates...
Table 1

Characterization of receptor variants derived from A/duck/Ukraine/1/63 (H3N7)

<table>
<thead>
<tr>
<th>Receptor variants</th>
<th>Agglutination of erythrocytes</th>
<th>Hemagglutination inhibition (equine α-M)</th>
<th>Amino acid at residue 226a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Native</td>
<td>Asialo</td>
<td>SAα2,3Gal</td>
</tr>
<tr>
<td>A/duck/Ukraine/1/63 (parent)</td>
<td>64</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>UK6</td>
<td>32</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>UK19</td>
<td>64</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>UK25</td>
<td>64</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>UK48</td>
<td>64</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>UK62</td>
<td>64</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>UK6</td>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UK6</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UK6</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UK6</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UK6</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a Receptor variants of A/duck/Ukraine/1/63 were obtained as described in the text, plaque-purified three times, and grown in MDCK cell culture. Hemagglutination titrations were performed with MDCK cell lysates after removal of cell debris by low speed centrifugation (700 × g for 10 min).

1 Human erythrocytes were either unmodified (Native), treated with V. cholerae sialidase (asialo), or sialidase-treated cells resialylated with CMP-sialic acid and purified sialyltransferase as described under "Materials and Methods." The sialyloligosaccharide structures examined are SAα2,3Gal1,3GlcNAc (SAα2,3Gal) and SAα2,6Gal1,4GlcNAc (SAα2,6Gal) commonly found as terminal sequences on O- and N-linked oligosaccharides, respectively. HA titers were determined as described and are expressed as the reciprocal of the highest dilution of virus that produced agglutination (0 < 226).

2 Hemagglutination inhibition by purified, heat-inactivated (30 min at 56 °C) equine α2-macroglobulin (α2-M) was performed as described. The initial concentration of inhibitor (0.6 mg/ml) was roughly the same concentration found in unfraccionated serum (22). Results are expressed as the reciprocal of the highest dilution of α2-macroglobulin causing inhibition of native erythrocyte agglutination by 4 hemagglutinating units of virus.

3 Deduced from the nucleotide sequences of the HA1 region of the hemagglutinin genes. Nucleotide sequences were determined using the dideoxyribonucleotide chain termination method with a primer extension system containing virus RNA, reverse transcriptase, and 5'-α2-P-labeled synthetic oligonucleotide primers (7). The only amino acid sequence changes detected were at residue 226 as a result of changes in the triplet nucleotides 754-756 from CAG (glutamine, Glu) to GTG (leucine, Leu).

4 Agglutinated erythrocytes derivatized to contain the SAα2,3Gal linkage did not agglutinate SAα2,6Gal-derivatized cells and was not sensitive to hemagglutination inhibition by equine α2-macroglobulin. The five wild type clones exhibited receptor properties identical to those of the parent strain. In contrast, five variants agglutinated cells modified to contain SAα2,6Gal linkages did not agglutinate SAα2,3Gal-derivatized cells and were sensitive to hemagglutination inhibition by equine α2-macroglobulin. The receptor binding properties of these variants of A/duck/Ukraine/1/63, therefore, are very similar to those previously associated with the corresponding receptor type isolated for the human H3 isolates (4, 7, 8).

The complete amino acid sequences of the HA1 region of the hemagglutinins expressed by the parent strain and representative SAα2,3Gal- and SAα2,6Gal-specific clones were deduced from the nucleotide sequences of their RNA genes as previously described (7). The only amino acid sequence changes detected were at residue 226. As summarized in Table 1, amino acid 226 was glutamine in the parent strain and in the cloned wild type viruses while the cloned variants specific for SAα2,6Gal determinants had leucine at position 226. This residue is located in the distal portion of the molecule in the receptor pocket (13), and the presence of leucine or glutamine at amino acid 226 was previously observed to account for the different binding properties of the SAα2,6Gal-specific human H3 isolates and their SAα2,3Gal-specific receptor variants, respectively (7).

Changes in Receptor Specificity Associated with Growth in Eggs—During growth of the avian receptor variants in embryonated eggs for the purpose of sequence determination, the SAα2,6Gal-specific variants underwent a shift in receptor binding properties, reverting to the wild type SAα2,3Gal-specific, inhibitor-insensitive phenotype. To further examine this phenomenon, variants which had been plaque-purified (four successive plaque to plaque passages) and passaged once in MDCK cultures were seeded at various concentrations, ranging from 100 to 10 plaque forming units, in embryonated eggs and MDCK monolayers and grown for various lengths of time. Table II shows hemagglutination titrations, using derivatized red blood cells, of representative SAα2,3Gal-specific and SAα2,6Gal-specific cloned viruses after growth in the egg allantois (20 h at 37 °C) or MDCK cell culture (harvested at peak yield). The virus preparations were concentrated approximately 100-fold, by differential centrifugation, prior to assay to eliminate potential inhibitors of agglutination that may be present in allantoic fluid. Progeny from both of the SAα2,3Gal-specific isolates (UK19 and UK25) preferentially agglutinated erythrocytes modified to contain SAα2,3Gal determinants whether grown in MDCK cells or the embryonated egg. The weak agglutination of SAα2,6Gal-containing erythrocytes observed in both MDCK and egg grown virus is typical of concentrated preparations of A/duck/Ukraine/1/63 (4). The SAα2,6Gal-specific variants (UK43 and UK49), on the other hand, retained their specificity for SAα2,6Gal sequences when grown in MDCK cells, but exhibited an apparently dose-dependent gradient of reversion from the original SAα2,6Gal-specific phenotype to a wild type SAα2,3Gal-specific virus when grown in eggs. This receptor shift is especially evident at the higher infectious doses where one of the variants, UK43, agglutinated only SAα2,3Gal-derivatized cells and showed no agglutination of erythrocytes containing SAα2,6Gal sequences.
TABLE II
Receptor specificities of Ukraine variants after passage in the egg allantois and MDCK cell culture

<table>
<thead>
<tr>
<th>Host</th>
<th>Infective dosea</th>
<th>UK25</th>
<th>UK19</th>
<th>UK49</th>
<th>UK43</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pfu/HA ratios</td>
<td>$a_{2,3}$</td>
<td>$a_{2,6}$</td>
<td>$a_{2,3}$</td>
<td>$a_{2,6}$</td>
</tr>
<tr>
<td>MDCK</td>
<td>10^7</td>
<td>4,096</td>
<td>4,068</td>
<td>128</td>
<td>4,096</td>
</tr>
<tr>
<td></td>
<td>10^8</td>
<td>8,192</td>
<td>8,192</td>
<td>128</td>
<td>8,192</td>
</tr>
<tr>
<td></td>
<td>10^9</td>
<td>16,384</td>
<td>16,384</td>
<td>128</td>
<td>16,384</td>
</tr>
<tr>
<td></td>
<td>10^7</td>
<td>8,192</td>
<td>8,192</td>
<td>206</td>
<td>16,384</td>
</tr>
<tr>
<td></td>
<td>10^8</td>
<td>8,192</td>
<td>8,192</td>
<td>206</td>
<td>8,192</td>
</tr>
<tr>
<td></td>
<td>10^9</td>
<td>16,384</td>
<td>16,384</td>
<td>206</td>
<td>16,384</td>
</tr>
<tr>
<td>EGG</td>
<td>10^7</td>
<td>8,192</td>
<td>8,192</td>
<td>206</td>
<td>8,192</td>
</tr>
<tr>
<td></td>
<td>10^8</td>
<td>8,192</td>
<td>8,192</td>
<td>206</td>
<td>8,192</td>
</tr>
<tr>
<td></td>
<td>10^9</td>
<td>8,192</td>
<td>8,192</td>
<td>206</td>
<td>8,192</td>
</tr>
</tbody>
</table>

a Virus seed stocks were prepared by growth of plaque-purified virus (4 successive plaque to plaque passages) in MDCK cell cultures. Infectious titers (plaque-forming units/ml) of the cell lysates were determined as described under "Materials and Methods." These preparations had log pfu/HA ratios of 0.3 (UK19), 0.2 (UK25), 0.6 (UK43), and 0.7 (UK49). Receptor specificity was confirmed by hemagglutination titrations with derivatized erythrocytes, and results are shown in Table I.

b Hemagglutination titers toward resialylated SAa2,3Gal ($a_{2,3}$) and SAa2,6Gal ($a_{2,6}$) erythrocytes were assessed for each virus preparation as described in Table I. All preparations were concentrated 100-fold prior to assay.

c Seed stocks were diluted as shown and grown on MDCK monolayers in the presence of trypsin (20 mg/ml) at 34 °C. Virus was harvested at optimum times for each infectious dose, as determined by visual assessment of the cytopathic effect.

d Appropriate dilutions of virus seed stocks were injected (0.2 ml) into the allantoic cavity of 10-day-old chicken embryos and incubated at 37 °C.

TABLE III
Time course of adaptation by Ukraine variants during growth in ovo

<table>
<thead>
<tr>
<th>Variant</th>
<th>1 day</th>
<th>2 day</th>
<th>3 day</th>
<th>4 day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a_{2,3}$</td>
<td>$a_{2,6}$</td>
<td>$a_{2,3}$</td>
<td>$a_{2,6}$</td>
</tr>
<tr>
<td>UK19</td>
<td>128</td>
<td>4</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>UK25</td>
<td>1024</td>
<td>16</td>
<td>1024</td>
<td>0</td>
</tr>
<tr>
<td>UK43</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>UK49</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

a The allantoic cavity of 10-day-old chicken embryos were injected (0.1 ml) with 10 pfu/egg of virus and incubated at 37 °C.

b Hemagglutination of SAa2,3Gal ($a_{2,3}$)- or SAa2,6Gal ($a_{2,6}$)-derivatized cells by concentrates (100 x) of egg grown virus was examined as described in Table I. Results are expressed as reciprocals of the highest dilution of virus that resulted in agglutination (0 = <2).

At the lower infectious doses (10-100 pfu/egg), the SAa2,6Gal clones grew poorly in eggs, and of the virus that was present (after only 1 day of growth), there was no evidence for the specificity changes that occurred at the higher doses (Table II). However, incubation of eggs inoculated with SAa2,6Gal-specific variants at 10 pfu/egg for 2, 3, and 4 days also revealed evidence of selection on the basis of receptor binding (Table III). The same pattern of adaptation by the SAa2,6Gal-specific variants was also observed when plaque clutches were used as the source of inoculum (data not shown). These observations suggested that the wild type virus with the SAa2,3Gal-binding phenotype grew more rapidly in ovo than the SAa2,6Gal variants (Tables II and III) and that selection could occur simply by the wild type virus outgrowing and variants.

Absence of Receptor Shift when Other Receptor Variants of the H3 Serotype Are Grown in Ovo—A change in receptor specificity upon transfer from MDCK cell culture to growth in ovo is not a phenomenon observed with all SAa2,6Gal-specific viruses of the H3 serotype. Indeed, numerous SAa2,6Gal-specific human isolates have been routinely passaged in ovo with retention of receptor specificity (4, 7). To illustrate this, Table IV compares the receptor specificities of the SAa2,6Gal- and SAa2,3Gal-specific A/duck/Ukraine/1/63 viruses with the corresponding receptor specific viruses derived from the human virus, A/Memphis/102/72 (8), after growth in MDCK cell or eggs. The SAa2,3Gal-specific variants of A/duck/Ukraine/1/63 and A/Memphis/102/72 both retain the specificity of MDCK grown parents as indicated by agglutination of erythrocytes bearing SAa2,3Gal sequences. As reported above for the UK43 and UK49 clones (Tables II and III), three other SAa2,6Gal-specific variants of A/duck/Ukraine/1/63 grow in MDCK cell cultures, with retention of specificity, but revert to the SAa2,3Gal-specific wild type when grown in the allantoic cavity of fertile eggs. In contrast, SAa2,6Gal-specific clones of the human virus A/Memphis/102/72 retain their specificity for the SAa2,6Gal linkage when grown in either MDCK cell culture or the embryonated egg.

DIFFERENCES IN RECEPTOR BINDING BETWEEN HUMAN AND AVIAN SAa2,6Gal-SPECIFIC VARIANTS—Since human isolates of the H3 subtype specific for SAa2,6Gal determinants readily replicate in eggs and the A/duck/Ukraine/1/63 variant specific for SAa2,6Gal sequences do not, attempts were made to identify possible differences in receptor binding between them. Asian human erythrocytes were modified to contain terminal SAa2,6Gal linkages of two naturally occurring sialic acids N-acetyleneuraminic acid (NeuAc) and N-glycolyneuraminic acid (NeuGc) with the SAa2,3Gal-binding phenotype grown more rapidly in ovo than the SAa2,6Gal variants (Tables II and III) and that selection could occur simply by the wild type virus outgrowing and variants.

Receptor specificity was determined by agglutination of derivatized erythrocytes as described in the legend to Table I.
Table V

Agglutination of erythrocytes derivatized to contain different sialic acids in the α2,6 Gal linkage

<table>
<thead>
<tr>
<th>Virus variant</th>
<th>Sialic acid</th>
<th>NeuAc</th>
<th>NeuGe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/duck/Ukraine/1/63</td>
<td>UK3</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UK16</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UK48</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UK50</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UK30</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>A/Memphis/102/72</td>
<td>M1/5</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>M1/HS9</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>M1/HS10</td>
<td>64</td>
<td>32</td>
</tr>
</tbody>
</table>

The donor substrates CMI-NeuAc and CMF*-NeuGe were prepared by published procedures (23, 24) with modifications (H. Higa and J. Paulson, manuscript in preparation). Asialo erythrocytes were resublated as described under Materials and Methods* using other 39.6 millimolar (NeuAc) or 18.7 millimolar (NeuGe) of purified α2,6Galβ1,4GlcNAc rat liver sialidase. The amount of sialic acid incorporated, expressed as nmol/ml of packed erythrocytes, was 40.7 nmol/ml for NeuAc2,6Gal cells and 30.9 for NeuGc2,6Gal cells. Hemagglutination assays were performed as described under Materials and Methods using clarified MDCK cell lysates, and results are expressed as the reciprocal of the maximum dilution required to give agglutination (0 = <2).

ac (NeuGe). As shown in Table V, while the human isolates agglutinated erythrocytes containing either NeuAc or NeuGe, the A/duck/Ukraine/1/63 variants only agglutinated cells containing NeuAc. Analysis by thin layer chromatography (19) of sialidase-sensitive sialic acid present on the chondroitin sulfate membrane of 11-day-old fertile hens' eggs, however, did not reveal any NeuGe; only NeuAc was present (data not shown). Thus, while differential binding of human and avian SAo2,6Gal-specific variants to NeuGc containing receptors does not provide an explanation for differences in egg selection, functional variation in the receptor binding properties of their hemagglutinins can be demonstrated.

Discussion

We have reported previously that influenza viruses of the H3 subtype which recognize sialic acid in different linkages can be obtained by passaging wild type virus in the presence of inhibitors of agglutination (7, 8). Specifically, Hong Kong influenza viruses isolated from humans and grown in the absence of inhibitor recognize sialic acid in the α2,8 linkage to galactose on oligosaccharide side chains, and receptor variants which recognize sialic acid linked α2,3 to the penultimate residue can be isolated by growing virus in the presence of nonimmun serum, a source of α2-macroglobulin which is a potent inhibitor of virus bearing SAo2,6Gal-specific hemagglutinins. In this paper, we demonstrate that the reverse selection can also be made. Using the H3 virus A/duck/Ukraine/1/63 which recognizes the SAo2,3Gal linkage, variants which specifically recognize SAo2,6Gal linkages can be obtained by a procedure, fundamentally different from previous selection procedures, involving multiple cycles of adsorption to and elution from enzymatically modified erythrocytes. Nucleotide sequence analysis of the genes for the hemagglutinins of the wild type A/duck/Ukraine/1/63 virus and the variants indicate that the only change in sequence leads to the substitution of a glutamine at residue 226 in the SAo2,3Gal-specific hemagglutinin for a leucine in the SAo2,6Gal-specific molecule. These observations confirm our previous finding that residue 226 is a component of the sialic acid receptor binding pocket and emphasize its importance in determining the receptor specificity of the H3 hemagglutinin molecule.

Unlike the H3 viruses isolated from humans, however, and the variants derived from them, which all replicated efficiently in fertile hens' eggs, the SAo2,6Gal-specific variants of A/duck/Ukraine/1/63 grew very poorly in eggs, and the virus recovered from such infections had reverted to the SAo2,3Gal-specific phenotype. These observations provide direct evidence for the host-mediated selection, by growth in eggs, of viruses with modified receptor specificity. Since allantoic fluid does not inhibit hemagglutination by either the wild type or variant viruses (data not shown), the results suggest that membrane receptors which interact with the hemagglutinin of the virus are involved in the selection of viruses with appropriate specificity. The potential for cell surface receptors to mediate selection of receptor-specific viruses has been demonstrated using MDCK cells enzymatically modified to carry either SAo2,6Gal or SAo2,3Gal linkages. However, since hemagglutinins of influenza viruses of human origin with specificity for SAo2,6Gal sequences readily bind to receptors present in the egg, the apparent restricted binding of the SAo2,6Gal-specific A/duck/Ukraine/1/63 implies that a component of the receptor molecule in addition to sialic acid linkage is involved in determining the precise specificity of the virus-receptor interaction. This conclusion is supported by our observation that the SAo2,6Gal-specific isolates of A/Memphis/102/72 and A/duck/Ukraine/1/63 differ in their ability to agglutinate derivatized erythrocytes containing N-glycolylneuraminic acid. The molecular basis of this additional specificity is unknown. However, by comparing the amino acid sequences of the SAo2,6Gal-specific hemagglutinin from human and avian isolates and examining the locations of differing residues in the three-dimensional structure of the X-31 hemagglutinin (13), it is apparent that the amino acid differences at positions 137, 155, 158, 189, 193, 227, and 228 in or near the receptor pocket could individually or in combination impose the additional receptor requirements.

Finally, the observation that cell-surface receptors can mediate selection of receptor variants provides a partial explanation for the apparent changes in receptor binding properties which can occur during adaptation of influenza viruses to growth in different hosts. It is in this regard particularly relevant to the suggestion that an avian virus antigenically related to A/duck/Ukraine/1/63 was the progenitor of the virus responsible for the Hong Kong influenza pandemic of 1968 (20, 21).

Acknowledgments—We thank Jaaminder Weinstein and Ursula de Souza-e-Silva for preparation of the sialidase enzymes, Tom Fritchett for equine α2-macroglobulin, and David Stevens and Rose Gensel for technical support.

Note Added in Proof: A recent report relevant to work presented here has examined reassortant viruses of A/duck/Ukraine/1/63 containing a human virus H1 hemagglutinin (27). Results suggest that changes in amino acids 226 and 228 can alter the tissue tropism of the virus in ducks.

References

Host-mediated Selection of Influenza Virus Receptor Variants

