Membrane Fusion by Influenza Hemagglutinin

J. J. Skehel, T. Beechard, P. A. Bullough, F. M. Hughson, M. Knossow, D. A. Steinhauser, S. A. Wharton, and D. C. Wiley

1National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; 2Laboratoire de Biologie Structurale, UMR 9920, CNRS-Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France; 3Department of Biochemistry and Molecular Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138

Enveloped viruses infect cells by binding to cell-surface receptors and then fusing their membranes with cellular membranes to deliver their genetic material into the cell. Fusion can occur at the cell surface as is the case, for example, for paramyxoviruses (see, e.g., Kohn 1965), but in many infections it involves interactions between virus membranes and the membranes of endosomes into which the receptor-bound viruses are transferred (see, e.g., Pelchen et al. 1980). This is the case for influenza viruses for which the fusion potential of the receptor-binding membrane-fusion glycoprotein, the hemagglutinin (HA), is activated at endosomal pH (Maeda and Ohnishi 1980; Huang et al. 1981; White et al. 1981) in a process that involves extensive structural changes in the molecule. We present here observations on the nature of these changes that contribute to understanding of the requirement for fusion activity and to considerations of the mechanisms of protein-mediated membrane fusion.

NATIVE HA STRUCTURE

HAs are trimers of molecular weight about 220,000, 135 Å long, and approximately triangular in cross-section, varying in radius from about 15 Å to 40 Å. Each monomer consists of two disulfide-linked glycoproteptides, HA1 and HA2 (Compan et al. 1976; Schulze 1970; Laver 1971; Skehel and Schild 1971), produced during infection by cleavage of a precursor, HA0 (Klenk et al. 1972; Skehel 1972; Stanley et al. 1973). Cleavage generates the carboxyl terminus of HA1 and the amino terminus of HA2 (Skehel and Waterfield 1975) and is necessary for infectivity (Klenk et al. 1975; Lazarowitz and Choppin 1975) and for membrane fusion activity (Huang et al. 1981; White et al. 1981). Largely because of similar requirements by fusion glycoproteins of other viruses (Honna and Ohuchi 1973; Scheid and Choppin 1974), similarities in the amino-terminal sequences at the sites of cleavage (Gething et al. 1978), and the membrane-fusion properties of synthetic peptide analogs of these sequences (Lear and de Grado 1987; Murata et al. 1987; Wharton et al. 1988a), the amino-terminal region of HA2 has become known as the “fusion peptide.” The three-dimensional structure of the HA from the influenza virus of the 1968 pandemic, A/Ann/2/68, has been solved to 2.15 Å resolution (Wilson et al. 1981; Knossow et al. 1986; Watowich et al. 1994). Figure 1a is a diagram of a subunit which shows that the HA1 chain (light blue in Fig. 1) extends from the base of the molecule near the virus membrane, through a fibrous stem, to a membrane-distal region rich in β-structure. This region contains the receptor-binding site (Weis et al. 1988) and the sites to which infectivity-neutralizing antibodies bind (Wiley et al. 1981). Returning to the fibrous region, the HA1 chain terminates about 30 Å from the membrane. The most prominent features of the HA2 chain are a hairpin-like structure consisting of two antiparallel α helices linked by an extended chain, and a membrane-proximal β sheet. The longer 52-residue α helices of the hairpins associated with the trimer to form a central membrane-distal 30-Å long coiled coil. This extends to about 35 Å from the virus membrane where the helices separate to form a tripod-like structure that allows the central insertion of the amino-terminal region of HA2, the fusion peptide. The shorter 18-residue α helix of each hairpin is packed between the longer α helices of adjacent subunits. The five-stranded β-sheet structure comprises two strands of β structure formed by the HA2 chain at the membrane-proximal end of each α helix. The central fifth strand is contributed by the amino-terminal region of HA1 as it extends away from the virus membrane.

HA IN THE FUSION pH CONFORMATION

The above information on the three-dimensional structure of native HA derives from analyses of crystals of the soluble ectodomain of HA, released from purified virus by digestion with the protease bromelin (Brand and Skehel 1972; Wilson et al. 1981). This fragment lacks the 46-residue-long carboxy-terminal region of HA2 (Skehel and Waterfield 1975; Dophleo and Ward 1981; Wilson et al. 1981) that forms the hydrophobic membrane anchor of the complete glycoprotein and extends 11 residues internal to the virus membrane (Verhoeven et al. 1980). It is, however, indistinguishable from the ectodomain of complete HA in subunit composition (Wiley et al. 1977), antigenicity (Daniels et al. 1983a), secondary structure (Flanagan and Skehel 1977), and electron microscopic appearance (Wrigley et al. 1983; Rudigor et al. 1986b). Its preparation involves extensive bromelin digestion, and at neutral
pH it is resistant to further proteolysis. At the pH of membrane fusion, however, the ectodomain self-aggregates to form protein micelles that are sensitive to proteolysis (Fig. 2) (Skehel et al. 1982; Doms et al. 1985). Endoprotease LysC or trypsin digestion of the micelles cleaves HA1 at Lys-27, a residue buried in native HA, to release the membrane-distal domain formed by HA2 residues 28-328 as a soluble monomer (Skehel et al. 1982; Bizebard et al. 1995). Subsequent thermolysis digestion dissociates the residual HA2 micelles (Fig. 2) by removing initially the amino-terminal 23 residues of HA2 and eventually the 37 amino-terminal residues (Daniels et al. 1983b; Ruigrok et al. 1988). The soluble product is trimeric and contains HA2, residues 38-175, disulfide-linked (HA14-HA2337) to the amino-terminal peptide of HA1, residues 1-27. The derivation and properties of these two soluble fragments of HA in the fusion-pH conformation are described diagrammatically in Figure 1. As in the case of the soluble HA ectodomain, their structures have been solved crystallographically (Bullough et al. 1994; Bizebard et al. 1995).

THE MEMBRANE-DISTAL GLOBULAR DOMAIN, HA2 RESIDUES 28-328

Chemical cross-linking of the soluble fragment HA1 28-328 released proteolytically from fusion-pH HA micelles indicated that it is monomeric (Ruigrok et al. 1988). Following deglycosylation by digestion with N-glycosidase F and endoglycosidase H, the fragment formed a soluble complex with a Fab of known structure derived from a virus infectivity-neutralizing monoclonal antibody (Bizebard et al. 1994, 1995). The threedimensional structure of the crystalline complex was determined at 3.3 Å resolution. In the crystal as in solution, the fragment is monomeric, and between HA1 43 and HA2 309 it retains the structure that it adopts in native HA (Fig. 1). This is consistent with observations that the fragment binds anti-HA monoclonal antibodies other than those that interact near the membrane-distal trimeric interface (Daniels et al. 1983a), its secondary structure is indistinguishable by circular dichroism (CD) from that deduced in the intact molecule (Skehel et al. 1982; Ruigrok et al. 1986a; Wharton et al. 1988b), and receptor-binding activity is retained by HA in the fusion-pH conformation (Daniels et al. 1983a; Sauer et al. 1989). The amino-terminal and carboxy-terminal strands, HA1 28-42 and HA2 310-328, respectively, are disordered.

THE SOLUBLE FRAGMENT PREPARED FROM THE FUSION-pH-INDUCED HA MICELLE BY THERMOLYTIC DIGESTION:

HA2 38-175:HA1 1-27

Chemical cross-linking indicated that this fragment remains trimeric (Ruigrok et al. 1988), but the crystal structure revealed extensive reorganization of these regions by comparison with their positions in the native molecule (Bullough et al. 1994). The color coding of the regions in Figure 1 is designed to illustrate the nature of these changes. In the fusion-pH conformation, the amino-terminal region of HA2, the fusion peptide, and two β strands to which it is connected (white, Fig. 1) form an extension of unknown structure to a new 67-residue α helix (HA2 38-105). In the fusion-pH trimere, this α helix forms a 100-Å-long coiled coil, the carboxy-terminal 30 residues of which (HA2 76-105, yellow, Fig. 1) are the only residues of the fragment to maintain their neutral-pH structure. They are preceded in the α helix by residues HA2 58-75 (orange, Fig. 1), which formed the extended chain linking the two antiparallel α helices of the native helical hairpin and the shorter α helix of the hairpin (HA2 38-57, red, Fig. 1) also translated through about 100 Å from its position in native HA and rotated 180°. Carboxy-terminal to this new helix, residues HA2 106-112 (green, Fig. 1), which formed part of the longer helix of native HA, refold to invert the remainder of the native helix (HA2 113-129, blue, Fig. 1), which remains helical in its new orientation, together with three strands of the native five-stranded β sheet and short α helices carboxy-terminal to them (magenta, Fig. 1). Beyond residue 162, HA2 is disordered in the crystal.

To summarize: In response to the pH of fusion in endosomes during infection or in vitro, concerted changes in HA structure occur (Fig. 3). These include:

1. Release of the fusion peptide from its buried native position and its relocation to the membrane-distal tip of a 100-Å-long triple-stranded coiled coil.
2. Formation of this coiled coil as a membrane-distal extension of the central 30 Å coiled coil of native HA by refolding the chain linking the two α helices of the native α helical hairpin and translocating the shorter helix to the top of the extension.
3. De-trimerization of the HA1 membrane-distal globular domains that otherwise retain their native structure and remain disulfide-linked through the elongated amino-terminal chain of HA1 to the rearranged trimer.
4. Inversion, en bloc, of the carboxy-terminal segment of the long central helix of native HA and the remainder of the membrane-proximal native HA2 structure.

These interpretations of the fusion-pH conformational change are consistent with proposals of a direct role in fusion for the hydrophobic fusion peptide (for review, see Wiley and Skehel 1987). As the amino terminus of the newly formed coiled coil, it would be projected toward the endosomal membrane, perhaps interacting with it to form a bridge with the virus membrane. If required for fusion, the gap between the two membranes may be narrowed by orienting the bridge parallel to them. This would seem to be possible if the interpretations of flexibility at both ends of the reorganized HA2 chain are correct.
Figure 1. Diagrams of the structure of (a) a subunit of the native HA trimer (Wilson et al. 1981), indicating the amino and carboxyl termini of the HA, and HA, chains, N, C, and N, C, the sites of proteolytic digestion exposed at fusion pH, HA, residue 27, 27, and HA, residue 37, 37, recognized by endoproteinase LysC and thermolysin, respectively; and HA, residues 43, and 369, beyond which the HA, domain is disordered in the Fab-HA, 28-328 crystal structure. The HA, chain is light blue, the HA, chain is color-coded to explain the fusion-pH-induced changes in structure. (b) The structure of a subunit of the fusion-pH trimer constructed diagramatically by adding the HA, 28-328 domain structure (c) to the HA, 38-175: HA, 1-27 thermolysin fragment structure (e). The discontinuous lines indicate components of the structures that are unknown. (c,d) Structures of the fragments resulting from endoproteinase LysC digestion of HA micelles at Fa, residue 27. The structure e was determined as a complex with a monoclonal antibody Fab fragment (Bizebarc et al. 1995); the structure d was deduced from e, a subunit of the soluble trimer prepared from the HA, micelle by thermolysin digestion at HA, residue 37 (Bullough et al. 1994).
FUSION pH MUTANTS

HA₂ in the fusion-pH conformation is more stable than native HA, as judged by its susceptibility to proteolysis and by spectroscopically detected changes in secondary structure as a function of temperature (Ruigrok et al. 1986a, 1988). This suggests that the cleavage of the precursor HA₀ is designed to produce a comparatively unstable HA primed for the fusion-pH-induced transition to a fusion-active form.

Analyses of mutant HAs that fuse membranes at higher pH than wild type led to the conclusions that

Figure 2. Electron micrographs of HA micelles, HA₂ micelles, and thermolytic fragment HA₂ 38-175: HA₁ 1-27 noted in Fig. 1, b, d, and e, respectively. Soluble, bromelain-released HA incubated at fusion pH forms HA micelles (left); endoproteinase LysC digestion of HA micelles forms HA₂ micelles (center). Thermolytic digestion of HA₂ micelles produces the soluble fragment HA₂ 38-175: HA₁ 1-27 (right). Negative staining with 1% sodium silicotungstate and protein preparations were carried out as described in Wharton et al. (1995). The arrowed components are sketched below the micrographs.

Figure 3. A diagram of the fusion-pH HA trimer constructed from the HA₁ (blue) and HA₂ (red) structures described by Bizebard et al. (1995) and Bullough et al. (1994), to show the central trimeric coiled coil and the detrimeredized HA₂ membrane-distal domains. The structures represented by the discontinuous lines are unknown, as is the relative orientation of the different domains.

Figure 4. A subunit of native HA to show the locations throughout the length of the molecule of amino acid substitutions (filled circles) that increase the pH of fusion by mutant HAs (Daniels et al. 1985, 1987). The open circles indicate the positions of site-specific changes made in studies of the fusion peptide (Gething et al. 1986; Steinhauer et al. 1995) and to disulfide cross-link the trimer in the membrane-distal domain (Godley et al. 1992).
the amino acid substitutions that they contain further destabilize the neutral-pH structure relative to the fusion-pH form and, in addition, that their distribution throughout the length of the trimer was indicative of extensive structural change at the pH of fusion (Daniels et al. 1985, 1987). Both conclusions are now supported by comparison of the molecular locations of the residues in native and fusion-pH HA structures (Bullough et al. 1994). There are two groups of mutants (Fig. 4): (1) those which contain substitutions that appear to destabilize the location of the HA$_2$ amino-terminal fusion peptide either by loss of hydrogen bonds to polar atoms, e.g., HA$_2$ D112G and HA$_1$ H17Q or by causing unfavorable packing interactions e.g., HA$_2$ I6M and HA$_2$ F9L; and (2) those which appear to involve loss or distortion of interactions in the interfaces between the chains and subunits of the trimer, distant from the fusion peptide and throughout the length of the molecule, e.g., HA$_2$ Q47R, HA$_2$ Q105K, HA$_2$ E81G, and HA$_1$ Q218E. All of the residues identify interactions that are lost in the transition to the fusion-pH structure; by comparison, mutations in the native coiled coil have not been selected.

The functional significance of the structural changes is supported by these genetic observations and has been reinforced by site-specific mutagenesis in the region of the fusion peptide, e.g., HA$_2$ G46E or G44A (Gettling et al. 1986; Steinbauer et al. 1995), and in the membrane-distal region of HA$_1$ (Godley et al. 1992). In the latter case especially, a requirement for reorganization of the membrane-distal globular domains was clearly shown by the introduction of internal disulfide bonds through HA$_1$ T212C and HA$_1$ N216C substitutions, to covalently cross-link the trimer. These bonds prevented the fusion-pH-induced changes in structure and prevented fusion; their reduction allowed both structural changes and membrane fusion to proceed.

ELECTRON MICROSCOPY

The conclusions drawn from the X-ray structures also explain a number of the features of lower-resolution electron microscopy (EM) images of HA in the fusion-pH conformation and proteolytic fragments derived from it. The disorganized and elongated projections from HA micelles formed when membrane-anchored bromelin-solubilized II A is incubated at fusion pH (Fig. 2) (Ruigrok et al. 1986b) can, for example, be interpreted to represent deterized HA$_1$, membrane-distal domains tethered to the HA$_2$ trimer by extended and flexible amino-terminal chains of HA$_2$. The terminal knobs on the HA$_2$-micelle projections (Fig. 2) (Ruigrok et al. 1988) can also be interpreted as representing the inverted region of HA$_2$ (blue and magenta, Fig. 1); the knot at one end of the thermolytic fragment of HA$_2$ (Ruigrok et al. 1988) can be identified similarly.

The overall dimensions of this fragment deduced from EM images agree well with those provided by the X-ray studies; in particular, they indicate a length of 105 Å, in close agreement with the length of the coiled coil. This measurement precluded a simple application of the results of amino acid sequence-based structure prediction to the fusion-pH structure of HA$_2$. These methods were applied to HA sequences when they first became available (Ward and Dopheide 1980) before the three-dimensional structure of native HA was known, and suggested an approximately 90-residue, 135-Å-long α-helical coiled-coil component of HA$_2$, rather than the α-helical hairpin structure that HA$_2$ was subsequently found to adopt in native HA. Similar predictions, together with analyses of CD spectra of synthetic peptide analogs of parts of HA$_2$, later led to the proposal that HA$_2$ rearranges to form the predicted 135-Å-long coiled coil in the fusogenic state (Carr and Kim 1993). In this case, although there is indeed a structural rearrangement at low pH, the inverted hairpin structure that forms one end of the fusion-pH-induced HA$_2$ coiled coil was not anticipated, and the proposal was inconsistent with EM measurements of the length of the thermolytic fragment derived from fusion-pH HA (Ruigrok et al. 1986b, 1988).

EM analyses of HA have also been useful in studies of the fusion-pH structures of complete HA and fragments that contain fusion peptides or membrane-anchor regions, which in some cases, because of their tendency to form micelles, have not been crystallized. EM of one such fragment, derived as an initial thermolytic digestion product of HA$_2$, 14 residues longer than the fragment used in the X-ray studies, had a length of 130 Å compared with 110 Å for the crystalline fragment (Ruigrok et al. 1988). These measurements, together with those of the length of HA$_2$ micelles (Ruigrok et al. 1986b), are the basis for the HA$_2$ amino-terminal extension shown in Figure 1b and d and for the conclusion that the fusion peptide is at the top of the coiled coil.

Analysis of virosomes containing HA$_2$ (Fig. 5) showed that the structure of HA$_2$ projecting from the membrane is indistinguishable by EM from that of the thermolytic fragment of HA$_2$, indicating that there are no detectable structural consequences of the lack of a carboxy-terminal membrane anchor or of an amino-terminal fusion peptide for the conformation of HA$_2$ at fusion pH (Wharton et al. 1995). Further probing of these structures with monoclonal antibodies that specifically bind at fusion pH to the refolded section of the longer native α helix, HA$_2$ 105-112 (green, Fig. 1), clearly showed the membrane-distal location of this knob-forming region of the molecule. These observations also indicate that the fusion peptide is associated with the virosome membrane, which is consistent with results from photoactivated-phospholipid labeling of HA$_2$ in virus membranes (Weber et al. 1994).

HA$_2$ in this orientation, therefore, appears to be associated with the virosome membrane through both its carboxy-terminal membrane anchor and its amino-
terminal fusion peptide, implying that rotation of complete HA₂ occurs when virosomes, or indeed viruses, are incubated at fusion pH in the absence of a target membrane. This process, which would seem automatically to inactivate HA fusion capacity, reflects the flexibility of the carboxy-terminal, membrane-proximal region of HA₂, and the inverted structure may represent an orientation adopted by HA with the formation of a single membrane at the completion of fusion.

ACKNOWLEDGMENTS

We thank Lesley Calder, Alan Douglas, Rose Gonsalves, and David Stevens for excellent assistance. This work was supported by the Medical Research Council, National Institutes of Health (AI-13654 to D.C.W.), CNRS, and the European Economic Community. D.C.W. is an investigator with the Howard Hughes Medical Institute.

REFERENCES

