Tomato bushy stunt virus at 5.5-Å resolution

F. K. Winkler, C. E. Schutt & S. C. Harrison*
Gibbs Laboratory, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138

G. Brocogne
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

The coat of tomato bushy stunt virus is built from protein subunits having rigid domains connected by a flexible hinge. Two states of the hinge are present in the T = 3 icosahedral structure. Each subunit has a binding site for RNA on its inner surface.

Design principles of regular viruses were first clarified by Caspar and Klug1 who showed that quasi-equivalence could reconcile the variability of subunit packing (required to construct a shell of sufficient size) with the specificity of subunit bonding, necessary for self-assembly. The small, spherical RNA viruses pose two important structural questions: how is quasi-equivalent packing of identical protein subunits achieved, and how is the nucleic-acid chain accommodated in the particle? We describe here a 5.5-Å resolution electron-density map of tomato bushy stunt virus (TBSV), and derive some initial answers.

The TBSV particle comprises a single molecule of RNA (MW 1.5 x 10^6), 180 coat protein subunits (MW 41,000 each) and perhaps one copy of a larger polypeptide2-4. The coat protein forms a T = 3 icosahedral surface lattice, with prominent dimer clustering at the outside of the particle5. This design implies that a single kind of polypeptide chain packs in relation to its neighbours in three slightly different ways (Fig. 1). X-ray crystallography6,7 has revealed the orientation of local symmetry axes and suggested that the differences between quasi-equivalent contacts is related to RNA-induced perturbations.

The structure has been solved using multiple isomorphous replacement, combined with phase refinement by icosahedral averaging. Problems for data collection due to the large unit cell were solved using a focusing X-ray camera8, and a strategy for oscillation photography appropriate to the restriction that only one exposure can be obtained per crystal9. As in the 5-Å resolution study of the tobacco mosaic virus disk10, a problem of comparable magnitude, exploitation of the non-crystallographic symmetry11 has been important for obtaining a good map.

Data collection and phase determination
TBSV crystals, obtained as described before7, are cubic, space group 123, a = 383 Å. Each lattice point of the body-centred cubic cell is occupied by one virus particle, such that the crystallographic point group is the tetrahedral subgroup of the viral icosahedral symmetry.

X-ray intensities were measured by oscillation photography from crystals of the native virus and of two derivatives, PtC122 and Hg22 (Table 1). Coordinates for the PtC122 derivative were available from earlier work, refined in projection to 9 Å (ref. 7). A difference-Fourier 60-projection for the Hg22 derivative at 9 Å, (from a 6° precession photograph), using signs from PtC122 revealed two sets of quasi-equivalent sites (six sites per icosahedral asymmetric unit). One of these corresponds to the CH1,Hg2 sites used in the 16-Å work2, and the other to positions near the subunit tips. After conventional refinement, the average figure-of-merit was 0.57 (Table 2). Fivefold molecular averaging was then carried out using recently developed methods11. After one cycle of phase refinement the mean figure-of-merit was 0.76 (Table 2).

Electron density map
It is convenient to look at the electron density map in sections normal to a crystallographic twofold (arbitrarily chosen as the Z-axis). The 16-Å resolution map2 shows that the quasi-threefold axis is approximately parallel to the nearest strict twofold (Fig. 1), so that quasi-threefold related electron density features appear in almost the same Z-sections. The triangle shown in Fig. 1 is thus a useful choice for the icosahedral asymmetric unit, and we chose to contour on acetate sheets a region somewhat larger than this triangle, indicated by the rectangular outline.

Data collection and phase determination
TBSV crystals, obtained as described before7, are cubic, space group 123, a = 383 Å. Each lattice point of the body-centred cubic cell is occupied by one virus particle, such that the crystallographic point group is the tetrahedral subgroup of the viral icosahedral symmetry.

X-ray intensities were measured by oscillation photography from crystals of the native virus and of two derivatives, PtC122 and Hg22 (Table 1). Coordinates for the PtC122 derivative were available from earlier work, refined in projection to 9 Å (ref. 7). A difference-Fourier 60-projection for the Hg22 derivative at 9 Å, (from a 6° precession photograph), using signs from PtC122 revealed two sets of quasi-equivalent sites (six sites per icosahedral asymmetric unit). One of these corresponds to the CH1,Hg2 sites used in the 16-Å work2, and the other to positions near the subunit tips. After conventional refinement, the average figure-of-merit was 0.57 (Table 2). Fivefold molecular averaging was then carried out using recently developed methods11. After one cycle of phase refinement the mean figure-of-merit was 0.76 (Table 2).

Electron density map
It is convenient to look at the electron density map in sections normal to a crystallographic twofold (arbitrarily chosen as the Z-axis). The 16-Å resolution map2 shows that the quasi-threefold axis is approximately parallel to the nearest strict twofold (Fig. 1), so that quasi-threefold related electron density features appear in almost the same Z-sections. The triangle shown in Fig. 1 is thus a useful choice for the icosahedral asymmetric unit, and we chose to contour on acetate sheets a region somewhat larger than this triangle, indicated by the rectangular outline.

Data collection and phase determination
TBSV crystals, obtained as described before7, are cubic, space group 123, a = 383 Å. Each lattice point of the body-centred cubic cell is occupied by one virus particle, such that the crystallographic point group is the tetrahedral subgroup of the viral icosahedral symmetry.

X-ray intensities were measured by oscillation photography from crystals of the native virus and of two derivatives, PtC122 and Hg22 (Table 1). Coordinates for the PtC122 derivative were available from earlier work, refined in projection to 9 Å (ref. 7). A difference-Fourier 60-projection for the Hg22 derivative at 9 Å, (from a 6° precession photograph), using signs from PtC122 revealed two sets of quasi-equivalent sites (six sites per icosahedral asymmetric unit). One of these corresponds to the CH1,Hg2 sites used in the 16-Å work2, and the other to positions near the subunit tips. After conventional refinement, the average figure-of-merit was 0.57 (Table 2). Fivefold molecular averaging was then carried out using recently developed methods11. After one cycle of phase refinement the mean figure-of-merit was 0.76 (Table 2).

Electron density map
It is convenient to look at the electron density map in sections normal to a crystallographic twofold (arbitrarily chosen as the Z-axis). The 16-Å resolution map2 shows that the quasi-threefold axis is approximately parallel to the nearest strict twofold (Fig. 1), so that quasi-threefold related electron density features appear in almost the same Z-sections. The triangle shown in Fig. 1 is thus a useful choice for the icosahedral asymmetric unit, and we chose to contour on acetate sheets a region somewhat larger than this triangle, indicated by the rectangular outline.

Data collection and phase determination
TBSV crystals, obtained as described before7, are cubic, space group 123, a = 383 Å. Each lattice point of the body-centred cubic cell is occupied by one virus particle, such that the crystallographic point group is the tetrahedral subgroup of the viral icosahedral symmetry.

X-ray intensities were measured by oscillation photography from crystals of the native virus and of two derivatives, PtC122 and Hg22 (Table 1). Coordinates for the PtC122 derivative were available from earlier work, refined in projection to 9 Å (ref. 7). A difference-Fourier 60-projection for the Hg22 derivative at 9 Å, (from a 6° precession photograph), using signs from PtC122 revealed two sets of quasi-equivalent sites (six sites per icosahedral asymmetric unit). One of these corresponds to the CH1,Hg2 sites used in the 16-Å work2, and the other to positions near the subunit tips. After conventional refinement, the average figure-of-merit was 0.57 (Table 2). Fivefold molecular averaging was then carried out using recently developed methods11. After one cycle of phase refinement the mean figure-of-merit was 0.76 (Table 2).

Electron density map
It is convenient to look at the electron density map in sections normal to a crystallographic twofold (arbitrarily chosen as the Z-axis). The 16-Å resolution map2 shows that the quasi-threefold axis is approximately parallel to the nearest strict twofold (Fig. 1), so that quasi-threefold related electron density features appear in almost the same Z-sections. The triangle shown in Fig. 1 is thus a useful choice for the icosahedral asymmetric unit, and we chose to contour on acetate sheets a region somewhat larger than this triangle, indicated by the rectangular outline.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>Native</th>
<th>PtCl₂⁻</th>
<th>Hg²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fully recorded reflections measured</td>
<td>69,000</td>
<td>75,000</td>
<td>65,000</td>
</tr>
<tr>
<td>No. of independent reflections measured</td>
<td>26,700</td>
<td>27,100</td>
<td>26,700</td>
</tr>
<tr>
<td>R₁₀₀₅ = Σ</td>
<td>l₁ - l₀</td>
<td>/l₀</td>
<td>0.100</td>
</tr>
<tr>
<td>Mean isomorphous difference</td>
<td>-</td>
<td>0.29</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Data were collected by oscillation about [101], the shortest axis in reciprocal space; rotation from 0° to 20° (where 0° corresponds to [101] coincident with the X-ray beam) included more than 90% of the 29,000 independent reflections to 5.5 Å. The crystals thus always present a rather plate-like aspect to the X-ray beam, which is much smaller than the crystal diameter, so absorption effects are minimised. The oscillation range of a single 20°-24° exposure was 55-65° of arc. Exposures usually exhausted the crystal lifetime, so that we could not add partially recorded reflections from abutting photographs.3,4 Partial reflections, about 3 of those recorded, were not included in the data set but the ratios of the measured intensities of some of them to the intensities of corresponding symmetry-related whole spots on the same film, were used to obtain an accurate estimate of crystal orientation and hence an accurate discrimination between fully and partially recorded reflections.5 Because of the small cross-line in the focused beam and the small mosaic spread of the crystals, a 10-15° overlap of adjacent exposures ensured that all reflections were fully recorded on film. Films were densitometered using a PDP-11/20-linked Optometrics Photocath and a modified version of the program SCAN 12 (ref. 13). The output included an integrated intensity and a standard deviation for each reflection, the latter determined from the actual standard deviation of the measured background. The three films in a pack were scaled to each other by the method of Fox and Holmes.5 The approximately 3,000 fully-recorded reflections were sufficient to generate a Wilson-type plot of 〈Sr2〉 against sin(θ/2)², and these plots were used to determine relative scale and temperature factors for each film pack.

Fig. 2a Views along Z through sections of the TBSV 5.5-Å electron density map. a, Z = 112-140 Å, b, Z = 110-125 Å. Figure 1 gives orientation. Some features of secondary structure are indicated by lower-case letters: x is the inter-domain connection; h, the tangential rod, a, b and c, some radial rods; s, the saddle-like feature; and e, the extra density. The subunit boundaries may be judged by reference to (c); c, Packing of subunits and domains. A1, B1 and C1 represent subunits packed in one icosahedral asymmetric unit, related to each other by quasi-threefold rotation; A2, A3, A4, A5 and B5, each are related to B1 by fivefold rotations; similarly, B1, B5 and C1, C5, C1 are related to B1 by a strict dyad, A2 to B1 and B5 to A1, by quasi-dyads. The domains are indicated in rough outline: barrel-shaped domains protrude outwards from the surface, making only two-fold contacts; the more extensive domains 2 make contacts across all adjacent symmetry axes, forming a continuous polyhedral shell. The shading of CI indicates which domain is associated with the labelled domain 2. Domains 1 for C2, B1 and A5 are not shown. Stars indicate the interrupted contact ("cleft"), occupied by RNA. The scale is the same for (a), (b) and (c).

The electron-density features within this icosahedral asymmetric unit begin at about Z = 112 Å and extend out to Z = 170 Å. At Z = 110 Å there are faint and rather wispby but relatively continuous features. From Z = 112-140 Å, the volume is entirely filled with dense features, and at larger values of Z, density is concentrated more and more around the strict and quasi dyads, leaving large gaps in between. The icosahedrally-ordered part of the virus structure can thus be described as a roughly 30-Å thick, compact polyhedral shell, from which 90 protrusions, the dimer-clustered morphological units so clearly seen in electron micrographs, emerge.

Boundaries and domains

Figure 2a shows the composite electron density of sections from the central part of the polyhedral shell. Local threefold symmetry is visible in the central part of the asymmetric unit, and there is striking similarity of corresponding parts of quasi-equivalent subunits. Assignment of subunit boundaries was aided by the requirement that symmetry-related density features near an axis must belong to different subunits, even though they may seem weakly connected. A good illustration of the clarity of most boundaries is the gap running more or less along the lower edge of the icosahedral asymmetric unit (connecting the strict threefolds) in Fig. 2a. The quasi-equivalent boundaries, not as pronounced in this view, show up equally well if viewed along the local dyad.

The most outstanding characteristic of the subunit is that it falls into two very distinct, globular domains (Fig. 3). The smaller of these (domain 1) forms half of one of the dimer-clustered protrusions; the larger (domain 2) forms part of the polyhedral shell. Domain 2 has a rather distinct, saddle-like feature just against its innermost surface, which we describe in the next section. The two domains are connected at only one place by a narrow
Table 2 Phase determination

<table>
<thead>
<tr>
<th>Site</th>
<th>Z</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>D</th>
<th>R<sub>c</sub></th>
<th>R<sub>f</sub></th>
<th>R<sub>merge</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>PtCl<sub>6</sub><sup>-</sup></td>
<td>55</td>
<td>53</td>
<td>0.0157</td>
<td>0.1493</td>
<td>0.3060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>49</td>
<td>46</td>
<td>0.0756</td>
<td>0.0481</td>
<td>0.3014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>49</td>
<td>48</td>
<td>0.0619</td>
<td>0.0203</td>
<td>0.3011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>19</td>
<td>35</td>
<td>0.1132</td>
<td>0.0059</td>
<td>0.2933</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[R_c = 0.58, \ R = 0.56, \ \text{r.m.s.} \ f_r/\text{r.m.s.} \ E = 1.86, \ \text{mean} \ \Delta F/\text{mean} \ F = 0.12 \]

Hg²⁺

<table>
<thead>
<tr>
<th>Site</th>
<th>Z</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>D</th>
<th>R<sub>c</sub></th>
<th>R<sub>f</sub></th>
<th>R<sub>merge</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>80</td>
<td>25</td>
<td>0.0372</td>
<td>0.0905</td>
<td>0.3339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>71</td>
<td>27</td>
<td>0.0358</td>
<td>0.0923</td>
<td>0.3344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>81</td>
<td>35</td>
<td>0.0010</td>
<td>0.0271</td>
<td>0.3360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>71</td>
<td>25</td>
<td>0.0680</td>
<td>0.1205</td>
<td>0.4234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>66</td>
<td>28</td>
<td>0.0822</td>
<td>0.0976</td>
<td>0.4277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>76</td>
<td>23</td>
<td>0.0140</td>
<td>0.0143</td>
<td>0.4301</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[R_c = 0.55, \ R = 0.53, \ \text{r.m.s.} \ f_r/\text{r.m.s.} \ E = 1.9, \ \text{mean} \ \Delta F/\text{mean} \ F = 0.26 \]

Statistics of molecular averaging up phase refinement

- Coordinates of origin: initial (DTR), 0.37, final (combined), 0.76.
- Comparison of calculated and observed structure factors:
 \[R = \langle ||F_{calc}||^2 - ||F_{calc}||^2 \rangle / \langle ||F_{calc}||^2 \rangle = 0.37 \]
- Mean phase difference = \langle \theta_{calc} - \theta_{calc} \rangle = 47°
- Alternate rounds of phasing and coherently-constrained least-squares refinement used starting coordinates obtained as described in the text.
- Coordinates and occupancies for both derivatives were refined in projection, first at 9 Å then at 5.5 Å, and finally in three dimensions against a set of approximately 3,500 reflections representing a random sample of resolution and intensity ranges, selected with the criterion that the precision of heavy-atom intensity differences meet a pre-determined minimum. After refinement in projection, self and cross-difference maps gave evidence for additional sites, a conclusion confirmed in these dimensions. Site names correspond to the subunit to which they were subsequently seen to bind (compare Fig. 2c), and only one icosehedral asymmetric unit of sites is given. The quoted values of \(R_c \) and so on, refer to the 500 well-measured reflections used for the refinement. For icosahedral phase refinement, an initial map, computed on a 1.1-Å grid for accurate interpolation, was averaged about the icosahedral fivefold axes to determine the molecular envelope; density not part of the particle to which these axes refer is smeared out by this procedure, enhancing the boundary contrast. The final envelope for an entire virus particle is a rhombohectagon (Fig. 1) with roughly cylindrical 'pillars' at each fivefold and quasi-fivefold position, where subunit tips protrude. Averaging and setting density outside this envelope to zero yielded a symmetrised map (2.2-Å grid), from which structure factors were computed. The agreement between observed and calculated amplitudes is tabulated: mostly of this residual comes from the scatter of the figure-of-merit around its mean value in resolution shells. Calculated and DFR phases were combined using the Sim formula.

Domain 1

- Region of strong electron density: each domain thus appears to contain one terminus of the polypeptide chain.
- Domain 1 is about 30 x 30 x 25 Å in overall dimensions. It consists of two approximately parallel layers, oriented such that one layer forms an extended and tight dimer contact with domain 1 of the twofold (or quasi-twofold) related subunit. The general distribution of electron density in this domain resembles very strongly the β-barrel structures, also found dimer-clustered, in immunoglobulin fragments and in superoxide dismutase.
- The outer layer of the barrel is markedly curved; the inner appears flat, especially in the contact region. The strand directions in each layer cannot be established with certainty in a 5.5-Å map, but there is definite indication of a radial rather than tangential course. The outer layer of the barrel is markedly curved; the inner seems quite flat, especially in the contact region. The strand directions in described below.
- The connection of domains 1 and 2 is well defined and occurs at the point marked with a cross in Figs 2a and 3. Domain 2 itself is considerably more complex than domain 1, both in its internal structure and in its interactions with adjacent subunits. Nevertheless, its boundaries appear rather well determined, with one major ambiguity (see below). In tracing a boundary, we used the symmetry criteria described earlier and assumed that the domain is a reasonably compact globular unit.
- Figure 2c shows schematically the relation of domains 1 and 2 and the nearest-neighbour packing in the protein shell.
- Domain 2 has a number of rodlike features indicative of α-helices (these are absent in domain 1). These rods are oriented more or less radially with one important exception, which we refer to as the tangential rod (h, in Fig. 2a). As seen in Figs 2a and 3, one end of this rod connects with the feature that forms the junction between the two domains. The tangential rod is 15 Å long (2–3 turns of α-helix) and located close to the dyad, such that the distance between twofold-related helical axes is 10 Å. Each rod is tilted slightly out of the plane normal to the dyad, and we have chosen the enantiomorph such that the tilted rods have a left-handed relationship. This packing is appropriate for right-handed α-helices. Closely-packed, radially-oriented rods in domain 2 show the same relative tilt, and the twist of the outer wall in the domain 1 β-barrel is also consistent with this choice. The three most prominent radially-directed rods (a, b, and c in Fig. 2a) seem to be in direct contact. Their lengths correspond to 2–3 turns. Rods a and b are tightly packed, whereas rod c is somewhat farther away. The principal ambiguity in boundary tracing, mentioned above, concerns the connection of c and some connected density to subunit C1 (Fig. 2c). The alternative assignment of c to A1 leads to

![Fig. 3 Schematic representation of the electron density in one subunit, viewed normal to the adjacent dyad and looking toward that dyad from the quasi-threefold. If the drawing is taken to represent C1 in Fig. 2c, then the direction of view is downwards in the plane of that figure. The lobe at the outside of the subunit (Z = 140–170 Å) is the β-barrel of domain 1; the cross indicates its connection to the more extensively α-helical domain 2; the 'saddle' lies beneath domain 2, and a tentative interpretation in terms of two stretches of RNA backbone is shown in the diagram.](image-url)
a more extended domain 2, but the choice is arbitrary. In the pentamer (or hexamer) contact regions near the bottom of domain 2, the density has a layer-like character, suggestive of β-sheet. Rods a and b are packed partly against this sheet-like feature. There are a number of shorter pieces of rod-like density, less clearly α-helices. One of these is close to the local threefold axis: the three such symmetry-related rods appear to form a sort of rudimentary, left-handed, three-stranded coiled-coil.

We estimated the volume occupied by all the strong features of one subunit as 51,000 ± 6,000 Å³, where the upper and lower limits correspond to generous and restricted estimates of surrounding side chain, Fourier cutoff and so on. If all this volume were protein, the corresponding MW would be 39,000 ± 5,000 (taking \(v = 0.74 \text{ cm}^3 \text{ g}^{-1} \)). Twelve nucleotides, our upper estimate for RNA in the saddle feature, occupy about 3,400 Å³ (taking \(v = 0.51 \text{ cm}^3 \text{ g}^{-1} \)). We can thus account for most of the protein subunit, although some 10% of the chain could be outside strong density in the present map.

Nucleic acid

A significant problem in interpreting the TBSV electron-density map has been to establish criteria for recognizing RNA. Strength of the density alone proved insufficient: the features described below are among the strongest in the map but no stronger than the α-helices. This is not surprising because partial occupancy of polynucleotide binding sites and other sorts of static disorder would diminish the corresponding density. A general picture of the nucleic acid might be one of ordered regions of backbone, bound to protein, interspersed with more disordered regions at smaller radii. The overall appearance of the map at about 110 Å from the particle centre is consistent with this view: strong features trail off towards the centre in little streamers of density. The distribution of this streaky density suggests that the polynucleotide chain may enter or leave a binding region in more than one way, but the strength of the beaded features to which they join indicates a definite conformation in the binding site.

A striking aspect of the map is the complicated and cross-connected texture of features between 110 and 120 Å, in contrast to the rather clear sheet-like or rod-like density of domains 1 and 2. In this region, each icosahedral asymmetric unit shows three very similar, though not precisely identical, saddle-shaped features, about 20 × 20 × 10 Å in extent (e in Fig. 2b). Each of these saddles forms the innermost with one protein subunit. In addition, there is a set of strong features with no quasisymmetric counterpart extending from near the strict twofold towards the strict threefold axes; we refer to this as extra density (e in Fig. 2b). Since the protein subunits are identical and since RNA is the only other significant component, this extra density is likely to represent part of the nucleic acid chain. Inspection of a 5.5 Å resolution map of yeast-phenylalanyl tRNA (computed as an F_{calc} - F_{obs} map by A. Jack, MRC Laboratory of Molecular Biology, Cambridge) shows that the sugar phosphate backbone has a quite characteristic appearance: a continuous stretch of density with barely resolved maxima spaced at distances of 6-7 Å, at or near the positions of phosphates, giving it a beaded aspect. Both the extra density and certain parts of the edges of the saddles have just this 6-7 Å beading. Moreover, the saddle lying beneath subunit C is connected to the extra density at several points, with the 6-7 Å periodicity continuing from one to the other. We therefore conclude that a significant part of the density between 110 and 120 Å represents polynucleotide chain.

The saddle features form rather distinct lobes of density just against the bottom of domain 2. We followed possible RNA backbone configurations in this region, although, in view of the ambiguities involved, such a tracing is rather speculative at this resolution. We believe that we can recognize two pieces of RNA backbone (Fig. 3). One of these emerges from the particle interior and passes near the strict or quasi-twofold; the second forms the outer rim of the saddle. We detected 10-12 possible phosphates. Density between these chains could in part be nucleoside bases, and the backbones are so oriented that they could be joined by two or three base pairs in the A-RNA geometry.

No simple description would seem to summarise protein-RNA contacts. The structure of domain 2 shows that several portions of the polypeptide chain, separated in the amino acid sequence, must come together to form the shallow pocket in which the saddle feature lies. Stretches of α-helix, as well as a region that may be β-sheet, are involved.

States of the protein subunit

The clarity of the electron density map has facilitated quantitative analysis of subunit similarities. The coat protein assumes two clearly different conformational states, depending on whether it is near a local or a true dyad in the \(T = 3 \) surface lattice. The individual domains 1 and 2 are essentially invariant, and a hinge between the rigid domains relates the two subunit conformations.

Corresponding well defined electron density maxima could easily be recognised in all three quasi-equivalent subunits and their superposition determined after appropriate rotation and translation. Referring to Fig. 2c, subunits A and B superpose very well, whereas A (or B) and C do not. Taken separately, however, domains 1 and 2 of A (or B) can be superposed with their analogues in C as well as A and B can be matched to each other. This implies that the relative orientation of domains 1 and 2 in C is different from their relative orientation in A or in B, but that individual domains are nearly invariant. The hinge between domains is

Fig. 4 Packing diagrams, showing subunits and relative orientation of the two domains. a, View similar to Fig. 1b, with a second icosahedral asymmetric unit replicated by the strict twofold axis. Each subunit is represented by a cylinder (domain 1) on a block-like base (domain 2). The three quasi-equivalent subunits are shown: white (A), hatched (B) and stippled (C). b, View of an icosahedral asymmetric unit, rotated 120° with respect to the view in (a). c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, View of the fivefold axis and the A-B contact across the quasi-dyad are quite tight, whereas the B-C' and C-C contacts about the quasi-sixfold and strict twofold axes are opened up to produce a cleft. The difference in the angle of contact across quasi (A-B) and strict (C-C') dyads requires a change in the angle between domains 1 and 2 to preserve the C-D pairing of domains 1. This is shown in (c-e); the A-B contact (quasi-dyad) is depicted in (e). If the contact between the domains 2 were altered, without a relative reorientation of domains 1 and 2 in each subunit, the C-C' contact (strict dyad) would appear as in (d). In fact, there is rotation by approximately 20° about a hinge between domains 1 and 2, producing the sort of contact shown in (e).
located just above the end of the horizontal z-helix (Fig. 3). The hinge rotation axis is approximately parallel to the axis of the tangential rod, and the angle of rotation is about 20° (for C, relative to A or B). There are small, though significant, differences between A and B, but the hinge position is clearly the same for both.

The inter-subunit contacts of the hinged protein are represented in Figs 2c and 4, which show how the hinge leads to quasi-equivalent subunit bonding. Domains 1 and 2 have large and essentially identical contacts both local and strict twofold axes. Domains 2 are likewise in extensive contact around the local threedfold axis, which, for these domains, approximates well to an exact triad. Schematically, the polyhedral shell formed by all the domains 2 can be represented by 60 wedge-like trimers in continuous contact across local dyads but with only their outer edges in contact across strict dyads (Fig. 4). This produces a cleft connecting strict threefold (quasi-sixfold) axes. The quasi-sixfold relationship is thus very exact: domains 2 of C1 and B5 in Fig. 2c are related essentially as A1 and A2, whereas the analogous contact between B1’ and C1 (star in Fig. 2c) is largely broken by the cleft. This is in fact the only place where contacts are not basically the same for all three quasi-equivalent subunits. It is the hinge between domains 2 and 1 of subunit C that permits the cleft to open (Fig. 4e): without it, TBSV protein could form only a simple $T = 1$ icosahedral shell. Since 'extra' electron density features appear in the cleft, but not in the tight contacts between C1 and B5 or A1 and A2, RNA may play a significant role in regulating assembly of correct-sized, $T = 3$ particles. RNA-free, $T = 1$ structures have indeed been observed in studies of reassembly of the related turnip crinkle virus.

Domains and hinges

The generalisation that large polypeptide chains will fold into smaller, compact domains has gained considerable strength from the several proteins solved thus far with subunit molecular weights greater than 30,000 (refs 24, 26). The two domains of TBSV protein have approximate molecular weights of 15,000 and 25,000; in the scheme of Levitt and Chothia they seem to be members of class II (all β) and III ($\alpha + \beta$), respectively.

The TBSV subunit is not the first example of a protein with flexibly-linked domains. The immunoglobulins are the classic case of such a structure, and the relation between light chains in the IgG Bence-Jones dimer is precisely analogous to the situation in TBSV: one of the chains in this dimer (the chain with a 'heavy-chain-like' configuration) bends at a hinge point, in order to conserve strong inter-molecular contacts. This type of structure could lead to controlled polymer phase in assembly.

The presence of RNA in the cleft at the C1/B1' interface seems to dictate the nature of inter-molecular contact and hence the choice of a $T = 1$ or $T = 3$ design. Since the angle of the contact is determined by the hinge angle, and the angles of ligands to residues in the hinge region, or at the domain 1/domain 2 interface, could likewise influence the mode of association. In general, a subunit with flexibly-connected rigid domains can be a useful element for controlled switching between distinct states of a macro-molecular assembly. Work on a 2.8Å resolution map of TBSV is underway.

We thank James Crawford for the SCAN 12 oscillation film scanning program, A. Jack for programs and a tRNA map, D. L. D. Caspar for advice, W. N. Lipscomb for use of an Optronics scanner and P.D.P. 11/20, Howard Bailey for technical assistance, Athena Andriopoulou for aid in data processing and the Harvard Chemistry Department for computing facilities including a remote terminal to the Columbia University IBM 360/91. The work was supported by a grant from the NCI. S.C.H. acknowledges a USPHS Research Career Development Award and F.K.W. a fellowship from the Swiss National Fund.

Received October 5, accepted December 10, 1976.
